If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+34x+30=0
a = 2; b = 34; c = +30;
Δ = b2-4ac
Δ = 342-4·2·30
Δ = 916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{916}=\sqrt{4*229}=\sqrt{4}*\sqrt{229}=2\sqrt{229}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{229}}{2*2}=\frac{-34-2\sqrt{229}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{229}}{2*2}=\frac{-34+2\sqrt{229}}{4} $
| 100(x+2)=200 | | x+136=50 | | 0=-10w+10w | | 12c-17=5c+4 | | -4+3m=3m | | 17+x=134 | | 6a+9=4a | | 16y+1=20y-11 | | 5x+2x-7=4x+6x7 | | 5a+4a=15 | | y=327 | | -x-3x-6=5x-5 | | 8(x+2=6(x+7) | | 8(x+2)=6(x=7) | | -3(e+1=2(e+11) | | x-x+14=4x-x+32 | | 0.3x+4.2=2.7 | | 5y-22=103 | | 7x+23=3x-(x-6 | | 8x+2+6x+80=180 | | 8x+2+6x=80 | | 2(x-4)+15=6x-11 | | (15x+33)=(10x+22) | | (4x+12)=(5x-10) | | 2w*5=60 | | (7+u)(2u-5)=0 | | (6x+24)=(7x+5) | | J(-5)=-4/5x+7 | | 2x-5=-8x+7 | | 2x2+5x(-4x+8)=2x2-20x2+4 | | 4(x+6)=2(2x+13 | | 2-(180000/x^2)=0 |